\square

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. I Year I-Semester (New) Examinations, December - 2015

Engineering Mechanics-I

Time: 3 hours
Max. Marks: 50
Note: Answer ALL questions in Part-A and any FIVE questions from Part-B

Part-A (15 Marks)

1. Define moment of a force.
2. Explain about hinged support.
3. Define angle of friction.
4. How do you evaluate radius of gyration?
5. Describe about a truss.
6. State Lami's theorem and list its limitations.
7. Define free body diagram and sketch one example.
8. Distingülsh between a deficient and a redundant truss.
9. Describe about Wedge and explain how it is used to raise heavy loads.
10. State and prove perpendicular axis theorem.

Part-B (5 X $7=35$ Marks)

11. a) A bar $A B$ of 6 mts length and 100 N weight is hinged at A. It supports a load of 25 kg at point B. The end B of the bar is connected to the wall by string BC . Determine the tension in the string and the reaction at A .

b) If the force multiplier of a force P acting from A to E is $P_{m}=10 \mathrm{~N} / \mathrm{m}$, and that of F acting from B to D is $F m=30 \mathrm{~N} / \mathrm{m}$ referring Fig. Find out the following:
i) Component of each force along AC
ii) Moment of P about the axis CD .

12. ai) Explain various force systems.
b) A, pulley ${ }^{*}$ of 1 mt radius, supporting a load of 500 N , is mounted at B on a horizontal beam.

If the beam weighs 200 N and the pulley weighs 50 N , find the hinge force at " C ".

13. a) Compute the moment of inertia of the I-section shown in figure about centroidal $x x$-axis.
*

b) Locate the center of gravity of a uniform wire is bent into the shape as shown in the fig. Take all dimensions in m

14. a) List the steps involved in analysis of a truss.
b) Find the axial forces in all the members of a truss shown in figure.

- 15. a) Two equal bodies A and B of weight ' W ' each are placed on a rough inclined plane. The bodies are connected by a light string. If $\mu_{A}=1 / 2$ and $\mu_{B}=1 / 3$, show that the bodies will be both on the point of motion when the plane is inclined at $\tan ^{-1}(5 / 12)$
b) A block 'overlying a 10° wedge on a horizontal floor and leaning against a vertical wall and weighing 1500 N is to be raised by applying a horizontal force to the wedge. Assuming the coefficient of friction to be 0.3 , determine the minimum horizontal force to be applied to raise
the block.

16. a) Three bars pinned together at B and C and supported by hinges at A and D. Form a four-link mechanism. Determine the value of ' P ' that will prevent motion.

$$
\dot{d}
$$

b) Two forces of 80 N and 50 N act at a point ' C ' of string ACB attached at points A and B .

Determine the tensions in each position of the string.

17. Write short notes on any two of the following:
a) Friction applications to simple systems.
b) Distinguish between a cantilever and simply supported beam and how will you find reactions in both the cases.
c) Derive from first principle the expression to compute the centroid of a semicircular plane area which is symmetric about y-axis and having radius R

